Ribosome profiling reveals changes in translational status of soybean transcripts during immature cotyledon development

نویسندگان

  • Md Shamimuzzaman
  • Lila Vodkin
چکیده

To understand translational capacity on a genome-wide scale across three developmental stages of immature soybean seed cotyledons, ribosome profiling was performed in combination with RNA sequencing and cluster analysis. Transcripts representing 216 unique genes demonstrated a higher level of translational activity in at least one stage by exhibiting higher translational efficiencies (TEs) in which there were relatively more ribosome footprint sequence reads mapping to the transcript than were present in the control total RNA sample. The majority of these transcripts were more translationally active at the early stage of seed development and included 12 unique serine or cysteine proteases and 16 2S albumin and low molecular weight cysteine-rich proteins that may serve as substrates for turnover and mobilization early in seed development. It would appear that the serine proteases and 2S albumins play a vital role in the early stages. In contrast, our investigation of profiles of 19 genes encoding high abundance seed storage proteins, such as glycinins, beta-conglycinins, lectin, and Kunitz trypsin inhibitors, showed that they all had similar patterns in which the TE values started at low levels and increased approximately 2 to 6-fold during development. The highest levels of these seed protein transcripts were found at the mid-developmental stage, whereas the highest ribosome footprint levels of only up to 1.6 TE were found at the late developmental stage. These experimental findings suggest that the major seed storage protein coding genes are primarily regulated at the transcriptional level during normal soybean cotyledon development. Finally, our analyses also identified a total of 370 unique gene models that showed very low TE values including over 48 genes encoding ribosomal family proteins and 95 gene models that are related to energy and photosynthetic functions, many of which have homology to the chloroplast genome. Additionally, we showed that genes of the chloroplast were relatively translationally inactive during seed development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterizing inactive ribosomes in translational profiling.

The broad impact of translational regulation has emerged explosively in the last few years in part due to the technological advance in genome-wide interrogation of gene expression. During mRNA translation, the majority of actively translating ribosomes exist as polysomes in cells with multiple ribosomes loaded on a single transcript. The importance of the monosome, however, has been less apprec...

متن کامل

Tissue-specific and organ-specific expression of soybean auxin-responsive transcripts GH3 and SAURs.

We used in situ hybridization to localize two classes of auxin-regulated transcripts, GH3 and SAURs, within organs and tissues of soybean seedlings and flowers. GH3 transcripts occurred in the inner cortex and protoxylem ridges of roots and were expressed transiently during flower and pod development. SAUR transcripts were expressed in the epidermis, cortex, and starch sheath of epicotyls and i...

متن کامل

Clustering of microarray data reveals transcript patterns associated with somatic embryogenesis in soybean.

Globular somatic embryos can be induced from immature cotyledons of soybean (Glycine max L. Merr. cv Jack) placed on high levels of the auxin 2,4-dichlorophenoxyacetic acid (2,4-D). Somatic embryos develop from the adaxial side of the cotyledon, whereas the abaxial side evolves into a callus. Using a 9,280-cDNA clone array, we have compared steady-state RNA from the adaxial side from which embr...

متن کامل

Ribosome profiling reveals the rhythmic liver translatome and circadian clock regulation by upstream open reading frames.

Mammalian gene expression displays widespread circadian oscillations. Rhythmic transcription underlies the core clock mechanism, but it cannot explain numerous observations made at the level of protein rhythmicity. We have used ribosome profiling in mouse liver to measure the translation of mRNAs into protein around the clock and at high temporal and nucleotide resolution. We discovered, transc...

متن کامل

Detecting translational regulation by change point analysis of ribosome profiling data sets.

Ribo-Seq maps the location of translating ribosomes on mature mRNA transcripts. While during normal translation, ribosome density is constant along the length of the mRNA coding region, this can be altered in response to translational regulatory events. In the present study, we developed a method to detect translational regulation of individual mRNAs from their ribosome profiles, utilizing chan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2018